

2008

TRIAL
HIGHER SCHOOL CERTIFICATE
EXAMINATION

Mathematics

1

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using blue or black pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total Marks - 120

- Attempt questions 1-10
- All questions are of equal value

	·											
	1	2	-3	4	5	6	7	8	9	10	Total	Total
1							·					
-]	<u> </u>	<u> </u>							/120	%

PLC Sydney Mathematics Trial HSC, 2008 Factorise completely $5x^3 + 135$.

(c) Find integers a and b such that $\frac{3}{2\sqrt{2} + 3} = a - \sqrt{b}$.

(d) Solve $|x - 3| \ge 5$.

(e) Solve x(2x + 7) = 4.

(f) Prove that $\frac{1}{\sec x - 1} - \frac{1}{\sec x + 1} = 2\cot^2 x$.

Ouestion 1 (12 marks)

Start a new sheet of writing paper

correct to 2 decimal places.

End of Question 1

2

2

2

2

2

Question 2 (12 marks)	Marks	
(a) Differentiate with re	espect to x	
$y(i)$ $x^2 \tan x$		2
(ii) $\frac{-\log_e x}{x}$		2
(b) (i) Find ∫sin 4:	x dx	2
ı (ii) Evaluate ∫—	$\frac{x^2}{dx}$	3

(c) Using Simpson's rule with five function values, find an approximation for $\int_{0}^{\pi} \cos^{2} x \, dx$.

End of Question 2

Marks

In the diagram, A, B, and C are the points (4, -3), (-2,5) and (5,4) respectively.

Copy or trace this diagram onto your writing paper.

2 Show that triangle ABC is isosceles. Use the cosine rule to find the size of $\angle ACB$. 1 Find the midpoint of AB. Show that the perpendicular bisector of AB has equation 2 3x-4y+1=0. Show that C(5,4) lies on the perpendicular bisector. 1 A circle is drawn through A and B with C as the centre. 1 Find the equation of this circle. 1 Find the length of the arc AB. (iii) Find the area of the segment cut off by the chord AB. 2

End of Question 3

3

Question 4 (12 marks) Start a new sheet of writing paper Marks

(a) Solve $3 \tan^2 \theta = 1$ for $0 \le \theta \le 2\pi$

(b) Solve $e^{2x} - 4e^x + 3 = 0$.

(c) D C

In the diagram, ABCD is a square and CDE is an equilateral triangle.

- (i) Copy the diagram onto your answer sheet.
- (ii) Prove that $\triangle AED = \triangle BEC$.
- (iii) Hence, or otherwise, prove that AE = BE.
- (iv) Find the size of $\angle AEB$. Give reasons for your answer.

End of Question 4

Quest	ion 5	(12 marks) Start a new sheet of writing paper	Marks	
(a)	A fu	nction is defined as $f(x) = 12x - x^3$.		
	(i)	Find the co-ordinates of the stationary point(s) of $y = f(x)$ and determine their nature.		3
	(ii)	Find the co-ordinates of any point(s) of inflection of $y = f(x)$)	2
	(iii)	Sketch the graph of $y = f(x)$, clearly showing intercept(s), stationary point(s) and point(s) of inflection.		2
	(iv)	Find the value(s) of x for which the function, $y = f(x)$, is bot increasing and concave up.	h	1
(b)				1 1 2

End of Question 5

Questi	ion 6	(12 marks) Start a new sheet of writing paper	Marks
(a)	Hagr after		
	(i)	How many spiders were initially in the forest?	1
	(ii)	At what rate is the spider population increasing after 10 days? Answer to the nearest spider.	2
	(iii)	Centaurs also live in the Forest. The number of centaurs is given by $C = 18e^{0.53t}$. How long will it take for the number of spiders to be the same as the number of centaurs? Give your answer in days, correct to 1 decimal place.	2
(b)	Solv	e $2\ln(x+3) = \ln(x+7) + \ln(x+1)$.	2
(c)	Find	the values of k for which $x^2 - (k+4)x + 1 = 0$ has no real roots.	2
(d)	is ro	area bounded by the curve $y = \sec 2x$ between $x = \frac{\pi}{8}$ and $x = \frac{\pi}{6}$ tated around the <i>x-axis</i> . Find the volume of the solid of lution formed.	. 3

End of Question 6

Question 7 (12 marks)			Start a new sheet of writing paper	Marks
(a) A parabola has foc		rabola has focu	s (5,-1) and directrix $y = 3$	
	(i)	Find the co-or	dinates of the vertex of the parabola	1
	(ii)	Find the equat	tion of the parabola.	2
	(iii)	equation $2x$ –	of the tangent to the parabola at $(-3,-7)$ has $-y-1=0$. Find the exact perpendicular distance s to this tangent.	2

The graph shows the velocity, $\frac{dx}{dt}$, of a particle as a function of time, in seconds. Initially the particle is at the origin.

(i) At what time(s) is the particle at rest?	2
(ii) At what time is the particle furthest from the origin?	1
(iii) The particle travels a distance of $2\frac{2}{3}$ cm in the first 2 seconds. Find the total distance travelled by the particle during the first 6 seconds and its final position.	2
Draw a sketch of the acceleration, $\frac{d^2x}{dt^2}$, as a function of time	2
for $0 \le t < 4$.	

Question 8 (12 marks) Start a new sheet of writing paper

Marks

- (a) Find the equation of the tangent to the curve $y = e^{3x}$ at x = 0.
- **(b)** (i) Show that $\frac{d}{dx}(x \ln x x) = \ln x$

3

2

3

The shaded region in the diagram is bounded by the the curve $y = \ln x$ and the lines y = 1 and x = 1.

Using the result of part (i), or otherwise, find the area of the shaded region.

(c) For Maths Week, Mr Palmer froze Mr Potato Head in a cylinder of ice. It melted in such a way that the block of ice remains a cylinder, similar to the original cylinder. Initially, the block of ice has a radius of 15cm and a height of 30cm. After 4 hours the ice has a volume of 5250\u03ccm^3. The rate of change of volume, in cm³/h, is given by

 $\frac{dV}{dt} = -k \text{, for some constant } k > 0.$

(i) Show that $V = \pi (6750 - 375t)$.

3

(ii) Find how long it took for the ice to reduce to half its original volume. 1

Page 8

End of Question 8

PLC Sydney Mathematics Trial HSC, 2008

Question 9 (12 marks) Start a new sheet of writing paper

Marks

(a) A new PLC Year 12 memento is to be made in the shape of a sector of a circle of radius, r, and containing an angle of θ radians at the centre. The perimeter of the memento is to be 60mm.

(i) Show that the area A mm² is given by

2

$$1 = \frac{1800\theta}{(\theta + 2)^2}$$

(ii) 1 Show that $\frac{dA}{d\theta} = \frac{1800(2-\theta)}{(\theta+2)^3}$

1

2 Find the maximum area of the memento.

2

Use the discriminant to show that 4x-y-16=0 is a tangent to the parabola $x^2=4y$.

2

(c)

 $\triangle ABC$ is right-angled at *B*. *BD* is drawn perpendicular to the hypotenuse. *DE* is parallel to *CB*.

BC = 15cm and AB = 20cm

Find the length of

(i) *BD*

2

(ii) DE

3

End of Question 9

PLC Sydney Mathematics Trial HSC, 2008

Quest	Question 10 (12 marks) Start a new sheet of writing paper M				
	A particle, A , moves along a straight line starting from 2cm to the right of the origin with an initial velocity of 2 cm/s. Its acceleration as a function of time, t_1 , is given by $a_A = -2 \sin t_1$.				
	A second particle, B , is initially at rest and moves along the same line starting 1cm to the right of the origin. It is initially at rest. Its acceleration as a function of time, t_2 , is given by $a_B = \cos t_2$				
	Particle B starts moving $\frac{\pi}{2}$ seconds after Particle A.				
(a)	Show that the expressions for velocity and displacement at any time, t_1 , for particle A are given by $v_A = 2\cos t_1$ and $x_A = 2 + 2\sin t_1$.	2			
(b)	Sketch the graph of the displacement of particle A for $0 \le t_1 \le 2\pi$.	2			
(c)	Show that the expressions for velocity and displacement at any time, t_1 , for particle B are given by $v_B = -\cos t_1$ and $x_B = 2 - \sin t_1$	2			
(d)	Find the distance between the particles, when $t_1 = \frac{\pi}{2}$.	2			
(e)	At what times do the particles meet for $0 \le t_1 \le 2\pi$?	2			
(f)	Find the difference between the distances travelled by the 2 particles between the first 2 times the particles meet.	2			

End of Paper

Page | of Q

Calendar Year

Trial HSC

Solutions for exams and assessment tasks

POTRITOTIZ TOT OVERTITE OF	de poponitions entre			7
Academic Year	Year 12	Calendar Year	2008 1.]
Course .	nathematics 24.	Name of task/exam	Trial HSC	

Question 1 LHS = secret - (secx-1) (b) 5x3+135=5(x3+27) = 5 (x+3) (x2-32+9) (c) $\frac{3}{2\sqrt{2}+3} = \frac{3}{2\sqrt{2}+3} \times \frac{2\sqrt{2}-3}{2\sqrt{2}-3}$ =652-9 Question 2 = 652-9 (a) (i) d (22 tanx) = x^2 , $\sec^2 x + 2x \tan x$ = $x(x \sec^2 x + 2 \tan x)$ = 9-652 = 9 - 172 (i) dx (logex) :. a= 9 b=72 (d) |x-3|≥5 = 2. 1 - logex. 1 -(x-3)≥5 = 1-logex 6) (i) San 4n du (e) x(2x+7)=4 =-1 cps 4x +C 2n2+7x-4=0 222-2+8x-4=0 $(\ddot{u})\int_{0}^{1}\frac{\chi^{2}}{n^{3}+1}dn$ x(2x-1)+4(2x-1)=0 (2n-1)(n+4)=0 $=\frac{1}{3}\left[\ln\left(x^{3}+1\right)\right]$ x=1 x=4

secx+1

secze-1

Solutions for exams and assessment tasks

· Course · Nathemat	ics 20, Name of task/exam. 1100.
y= 1052 x	(b) cos 0 = 50 +50 - 100 2x50x50
7 0 T T T T T T T T T T T T T T T T T T	:. 0 = I (90)
Just an he	$\frac{\pi - 0}{4}$ (c) $\left(\frac{4 - 2}{2}, \frac{-3 + 5}{2}\right) = (1, 1)$
	$-)+1$ (d) $m_{AB} = \frac{5+3}{-2-1}$
= 1 [6]	= 8 -6 = -4 -3
三型	: M = 34
uestion3 &(-2,5)	$y-1=\frac{3}{4}(n-1)$
	4y-4=3(x-1) $4y-4=3x-3$
	4y-4=3x-3 3x-4y+1=0
	(e) LHS= 3(5)-4(4)+1
das = $\sqrt{(4+2)^2 + (-3-5)^2}$ $= \sqrt{6^2 + 8^2}$	1 ()
=10	= RHs as reg'd (f(x)) $(x-5)^2 + (y-4)^2 = 50$
$d_{BC} = \sqrt{(5+2)^2 + (5-4)^2}$ $= \sqrt{7^2 + 1^2}$	(i) L=10
= 150	=\(\varphi\) (\varphi\)
$d_{AC} = \sqrt{(5-4)^2 + (4+3)^2}$	= 5/2 7 mits
$=\sqrt{1^2+7^2}$	(M) A= 1 v2 (0-smb)
: AABC is isosceles, AC	1 /2 5 7

Solutions for exams a	nd accessment tasks	•	
Solutions for exams a	Year 12	Calendar Year	3008 1.
Academic Year	720012		Trial HSC
Course	Mathematics 24	J Ivanie of task chang	

. Course .	Nathernatics 24
$= 25\left(\frac{\pi}{2} - 1\right)$	u²
Question 4.	
1) 3 tan 20=1	
tan20=3.	
tan 0 = = +1	3
6 = T	, 不一贯, 用十重, 2年
'= Tr	, 517, 715, 1111
(b) $e^{2x} - 4e^{x} + 3$ let $m = e^{2x}$	
m2-4m+	3=0 .

MAADE & ABCE LADE = LBCE (90-60°=30°) DE = CE (equal sides of equilateral Arrangle) AD = BC (equal sides of square) : DADE = DBCE (SASCONG test) ii) AE = BE (corresponding sides of congruent triangles) (iii) AD=ED Since AD=DC & (properties of squares \$. equilateral trangles) : DADE is isosceles LADE = LADC-LEDC = 30 .. 2 L DAE+ LAD E = 180 (angle sum of D is 180°) :. 240AE=180-30° -. LDAE = 75° LAEB+LDAE +LCED+LCEB = 360 (angles around apt) 'LAEB = 360 - (1x75 + 60) = 150°

Page 3 of 9

Solutions for exams a	nd assessment tasks
Academic Year	Year 12
. Course	Nathematics 24
Question 5	
) = 12-2-23	
$= 12 - 3x^2$	
= 3(4-x²).	
for stationar	7 pt =0
$3(4-x^2)=0$	
3(2-22)(2+22)	=0
光= ±2	
when n=-2	x= 2
,	
Test 72 -3 -2 1 f(m) -15 0	2 0 2 3
: mui at (-2,- max at (2,1)	-16) 6)
(n') For pts of	
f'(n)=0	· · ·
ie f. ((x)=-6x	
-6x=0	
x=0	
Test x -1	0 1
: change of so pt of wife	etoi
f(0) = 12(0)-(0)3
=0	,

.. Pt of inflection at (0,0)

Solutions for exams a	nd assessment tasks	<u> </u>
A cademic Year	Year 12	Calen

Solutions for exams a	III assessment atoms	1 37	2008 1.
Academic Year	Year 12	Calendar Year	
Academio rour	10 11 - 1206 211	Name of task/exam	Trial HSC
Course	Mathematics eu.	J THEM OF THE	

$$\frac{5}{2} = e^{0.27 t}$$

$$0.27 t = ln(\frac{5}{2})$$

$$t = ln(\frac{5}{2})$$

$$0.27$$

$$= 3.393669377$$

$$= 3.4 days$$

(b)
$$2\ln(x+3) = \ln(x+7) + \ln(x+1)$$

 $(x+3)^2 = (x+7)(x+1)$

$$\chi^{2} + 6\pi + 9 = \chi^{2} + 8\chi + 7$$

$$2\chi = 2$$

$$\chi = 1$$

$$\frac{820}{12.(8+4)^2-4(1)(1)} < 0$$

$$\frac{8^2+8k+16-4}{8k+12-4} < 0$$

$$\frac{8^2+8k+12-4}{8k+12-4} = 0$$

$$(k+6)(k+2) < 0$$

(d)
$$V = \pi \int y^2 dx$$

$$= \pi \int \sec^2 2x dx$$

$$= \pi \int \tan 2x \int_{\frac{\pi}{2}}^{\frac{\pi}{2}}$$

$$= \pi \int \tan \frac{\pi}{2} - \tan \frac{\pi}{4} \int$$

Question7

- (a) (i) Focal length = 2 : vertex (5,1)
 - (ii) (21-5)=-4(2)(y-1) $(z-5)^2=-8(y-1)$

(iii)
$$\int_{1} d = \left| \frac{2(5) - 1(-1) - 1}{\sqrt{2^{2} + (-1)^{2}}} \right|$$

- (b) (i) t=2, t=5
 - (ii) t=2
 - (iii) d= area mder cure = 2×(2=+1) = 7号

Question 8

(a)
$$y=e^{3x}$$
 $dy = 3e^{3x}$
 $dy = 3e^{3x}$
 $= 3e^{3x$

PLC Sydney Maths Department

Solutions for exam	is and assessment tasks		
Academic Year	Year 12	Calendar Year	3008 /·
Course	Mathematics 24	Name of task/exam ·	Trial HSC
contro	1	(r) V= 337	

	Academic Year	Year 12	Calendar
	Course	Mathematics 24.	Name of t
	-1=3(x-0)	-	E) .
و.	y= 32+1	*	3
		,	•
, Li			
	= x-12+1.l	n= -1	Que
	= 1 + lnx-		(1) P= 2
	= lnx		
		<u>د</u> .	60=
ัห่ง	A= rectangle	- I have du	r(0+2)
	= e-1 -[3	eense-x [·r:
	L		J
	=e-1- sel	ne-e-(14n1-1)	A =
		-é-yi[+1]	
		7	
	= c-2 42		
(c)	4V b		
()	dV= - k at		in), de
	v= - kt + ç		(h)1.51
	when b=0		
	V= T(15)3.30)	
	= 6750 T		
-	. C = 6750TT		
	: V= -kt+6	75017	
·	when t=4 V		
	5250 n = -4k		2.
	4K = 1500		
	k = 375		
	' \/ . 37	5 rt+ 6750 r	10

= Tr (6750-375t)

337517 = T (6750 - 375t)
= 375t= -3375 .
t= 9 hours.
Question 9 P= 2r + v 0
60=2v+v0
r(0+2)=60
$Y = \frac{60}{(9+2)}$ $A = \frac{1}{2} Y^{2} 0$
$A = \frac{1}{2} r^2 \Theta$
$=\frac{1}{2}\left(\frac{60}{0+2}\right)^{2}.9$
18008
(e+2) ³
(i) 1. $\frac{dA}{d\theta} = (0+2)^{2} 1800 - 18000.2(0+2)$
$= (0+2) 1800 [0+2-26]$ $(0+2)^{4}$
= 1800(2-0)
2. Maximum when
$\frac{dA}{d\theta} = 0$ 1e. $\frac{1800(2-\theta)}{(0+2)^3} = 0$ Page 6 of 9
1.55 0 01

Solutions	for exams	and assessment tasks
DOTELLOUR		

Solutions for exams at	ICI SESCESTITUTI LOSES		
Academic Year	Year 12	Calendar Year	೨८00 ₹ / ·
Course	nathamatics 24.	Name of task/exam	Trial HSC

·0=2

Test:

_	·	_	
0	1	2	3
dh	+	0	-

: max at 0=2

$$A = \frac{1}{2} \cdot r^{2} = \frac{1}{2} \cdot 15^{2} \cdot 2$$

$$= \frac{1}{2} \cdot 15^{2} \cdot 2$$

$$= \frac{1}{2} \cdot 225 \, \text{mm}^{2}$$

(b) 22=44 .

4x-y-16=0 -..(2)

from $y = \frac{\chi^2}{4}$

 $\therefore 4\pi - \left(\frac{\pi^2}{4}\right) - 16 = 0$

n2-16元+64=0.

for tangent, $\Delta = 0$ (one

A=162-4.1.64

:. 42-y-16=0 is tangent to MADCB

22-44

in h ABC&BDC

LABC= LBDC = 90 (gwen)

LACB= LDCB (common)

... A ABC | ABDC (equiangular) so sides in ratio

$$\frac{15}{25} = \frac{80}{20}$$

$$\therefore 80 = 15 \times 20$$

$$= 12 \text{ cm}$$

ABDE III ABCD (equiangular) because LDEB=CDB=90 (: (CBIIDE, co-wit Lisequal

> LBDE = LCBD (alternate angles are equal; CB[PE]

 $x^2 + y^2 = 225 - - 0$

x2+(25-y)=400 -- @ from 1 x2= 125-42 -- 3

3 m 22 5 - y2 + 625 - 50y + y2 = 400 850-504 = 400 -50 y =750

 $\chi^2 = 225 - 81$ Page 7 of 9

Solutions for exams and assessment tasks

Calendar Year Academic Year Mathematics 24. Name of task/exam. Trial HSC

m DEB a2+(20-b)2=144---@

from $a^2 = 256 - b^2 \cdot \dots$ (3)

3 mto 2

256-62+400-406+62=144 656-406 = 144 406 = 512 b = 12.8

a= 256 - 12-52 = 92-16 a = 9.6

: DE = 9.6cm

Question 10: a= - 2 sunt,

(i) a, = - 2 siht,

Ve 2 costite when t=0 V= 2

2 = 2 (050+c

2 = 2+c .. c = 0

So V = 2005 +1

Xx = 2 sink, + c

2 = 2 sm0+c

: X+= 2sunt +2

(c) as = costs a= cos(t,-1) = cos (-(5,-ti)) = cos (= -ti) = sunt,

> VB = - cost, +C 0 = - cos # + c

.. VB= -costi Xa= -sunt, +C 1 = - Smi = + C

1=-1+0

c = 2

= 2-smt,

(d) when t= I 2x=25in=+2 $\chi_R = 2 - \sin T$ =2-1

-. Distance b/w = 3cm

e) 2+25(nt, = 2-sint, 3 sint = 0 smt. =0: t, = 0, 17, 25 Page & of 9 PLC Sydney Maths Department Solutions for exams and assessment tasks

Academic Year	Year 12	Calendar Year	ఎం∞8 / .
Course .	Mathematics 24.	Name of task/exam	Trial HSC

when
$$t_2=0$$